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Fig. 1. Reliability attack on spam filters. (1) Poisoning instance #40 has the largest impact on the recall value, which is (2) also depicted
in the model overview. (3) There is heavy overlap among instances in the two classes as well the poisoning instances. (4) Instance #40
has been successfully attacked causing a number of innocent instances to have their labels flipped. (5) The flipped instances are very
close to the decision boundary. (6) On the feature of words “will” and “email”, the variances of poisoning instances are large. (7) A
sub-optimal target (instance #80) has less impact on the recall value, but the cost of insertions is 40% lower than that of instance #40.

Abstract— Machine learning models are currently being deployed in a variety of real-world applications where model predictions are
used to make decisions about healthcare, bank loans, and numerous other critical tasks. As the deployment of artificial intelligence
technologies becomes ubiquitous, it is unsurprising that adversaries have begun developing methods to manipulate machine learning
models to their advantage. While the visual analytics community has developed methods for opening the black box of machine learning
models, little work has focused on helping the user understand their model vulnerabilities in the context of adversarial attacks. In this
paper, we present a visual analytics framework for explaining and exploring model vulnerabilities to adversarial attacks. Our framework
employs a multi-faceted visualization scheme designed to support the analysis of data poisoning attacks from the perspective of
models, data instances, features, and local structures. We demonstrate our framework through two case studies on binary classifiers
and illustrate model vulnerabilities with respect to varying attack strategies.

Index Terms—Adversarial machine learning, data poisoning, visual analytics

1 INTRODUCTION

In the era of Big Data, Artificial Intelligence and Machine Learning
have made immense strides in developing models and classifiers for
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real-world phenomena. To date, applications of these models are found
in cancer diagnosis tools [19], self-driving cars [41], biometrics [58],
and numerous other areas. Many of these models were developed
under assumptions of static environments, where new data instances
are assumed to be from a statistical distribution similar to that of the
training and test data. Unfortunately, the real-world application of these
models introduces a dynamic environment which is home to malicious
individuals who may wish to exploit these underlying assumptions in
the machine-learning models. Consider e-mail spam filtering as an
example. To date, a variety of machine learning methods [11, 13] have
been developed to protect e-mail inboxes from unwanted messages.
These methods build models to classify e-mail as spam or not-spam.
However, adversaries still want their spam messages to reach your
inbox, and these adversaries try to build input data (i.e., spam e-mails)



that will fool the model into classifying their spam as safe. This can
be done by misspelling words that might cause the machine learning
classifier to flag a mail as spam or by inserting words and phrases that
might cause the classifier to believe the message is safe. Other adversar-
ial attacks have explored methods to fake bio-metric data to gain access
to personal accounts [8] and to cause computer vision algorithms to
misclassify stop signs [15]. Such exploits can have devastating effects,
and researchers are finding that applications of machine learning in real-
world environments are increasingly vulnerable to adversarial attacks.
As such, it is imperative that model designers and end-users be able to
diagnose security risks in their machine learning models.

Recently, researchers have begun identifying design issues and
research challenges for defending against adversarial machine learning,
such as data de-noising, robust modeling, and defensive validation
schemes [10, 62], citing the need to identify potential vulnerabilities
and explore attack strategies to identify threats and impacts. These
challenges lend themselves well to a visual analytics paradigm, where
training datasets and models can be dynamically explored against the
backdrop of adversarial attacks. In this paper, we present a visual
analytics framework (Figure 1) designed to explain model vulnera-
bilities with respect to adversarial attack algorithms. Our framework
uses modularized components to allow users to swap out various attack
algorithms. A multi-faceted visualization scheme summarizes the
attack results from the perspective of the machine learning model and its
corresponding training dataset, and coordinated views are designed to
help users quickly identify model vulnerabilities and explore potential
attack vectors. For an in-depth analysis of specific data instances
affected by the attack, a locality-based visualization is designed to
reveal neighborhood structure changes due to an adversarial attack. To
demonstrate our framework, we explore model vulnerabilities to data
poisoning attacks. Our contributions include:

• A visual analytics framework that supports the examination,
creation, and exploration of adversarial machine learning attacks;

• A visual representation of model vulnerability that reveals the
impact of adversarial attacks in terms of model performance,
instance attributes, feature distributions, and local structures.

2 RELATED WORK

Our work focuses on explaining model vulnerabilities in relation to ad-
versarial attacks. In this section, we review recent work on explainable
artificial intelligence and adversarial machine learning.

2.1 Explainable Artificial Intelligence - XAI
Due to the dramatic success of machine learning, artificial intelli-
gence applications have been deployed into a variety of real-world
systems. However, the uptake of these systems has been hampered by
the inherent black-box nature of these machine learning models [29].
Users want to know why models perform a certain way, why models
make specific decisions, and why models succeed or fail in specific
instances [18]. The visual analytics community has tackled this problem
by developing methods to open the black-box of machine learning
models [5, 35, 38, 39]. The goal is to improve the explainability of
models, allow for more user feedback, and increase the user’s trust
in a model. To date, a variety of visual analytics methods have been
developed to support model explainability and performance diagnosis.

Model Explainability: Under the black-box metaphor of machine
learning, several model-independent approaches have been developed
in the visual analytics community. EnsembleMatrix [59] supports the
visual adjustment of preferences among a set of base classifiers. Since
the base classifiers share the same output protocol (confusion matrices),
the approach does not rely on knowledge of specific model types. In
EnsembleMatrix, the users are provided a visual summary of the model
outputs to help generate insights into the classification results. The
RuleMatrix system [45] also focuses on the input-output behavior of a
classifier through the use of classification rules, where a matrix based-
visualization is used to explain classification criterion. Similarly, model
input-output behaviors were utilized in Prospector [29], where the

relations between feature values and predictions are revealed by using
partial dependence diagnostics.

While those approaches focused on utilizing model inputs and
outputs, other visual analytics work focuses on “opening the black box,”
utilizing the internal mechanisms of specific models to help explain
model outputs. Work by Muhlbacher et al. [47] summarizes a set
of guidelines for integrating visualization into machine learning algo-
rithms through a formalized description and comparison. For automated
iterative algorithms, which are widely used in model optimization,
Muhlbacher et al. recommended exposing APIs so that visualization
developers can access the internal iterations for a tighter integration of
the user in the decision loop. In terms of decision tree-based models,
BaobabView [61] proposes a natural visual representation of decision
tree structures where decision criterion are visualized in the tree nodes.
BOOSTVis [36] and iForest [70] also focus on explaining tree ensemble
models through the use of multiple coordinated views to help explain
and explore decision paths. Similarly, recent visual analytics work on
deep learning [24, 25, 30, 34, 44, 49, 55, 63–65, 68] tackles the issue
of the low interpretability of neural network structures and supports
revealing the internal logic of the training and prediction processes.

Model Performance Diagnosis: It is also critical for users to under-
stand statistical performance metrics of models, such as accuracy and
recall. These metrics are widely-used in the machine learning commu-
nity to evaluate prediction results; however, these metrics provide only
a single measure, obfuscating details about critical instances, failures,
and model features [2,69]. To better explain performance diagnostics, a
variety of visual analytics approaches have been developed. Alsallakh
et al. [1] present a tool for diagnosing probabilistic classifiers through
a novel visual design called Confusion Wheel, which is used as a
replacement for traditional confusion matrices. For multi-class classifi-
cation models, Squares [50] establishes a connection between statistical
performance metrics and instance-level analysis with a stacked view.
Zhang et al. [69] propose Manifold, a model-agnostic framework that
does not rely on specific model types; instead, Manifold analyzes the
input and output of a model through an iterative analysis process of
inspection, explanation, and refinement. Manifold supports a fine-
grained analysis of “symptom” instances where predictions are not
agreed upon by different models. Other work has focused on profiling
and debugging deep neural networks, such as LSTMs [56], sequence-
to-sequence models [55], and data-flow graphs [65].

While these works focus on linking performance metrics to input-
output instances, other methods have been developed for feature-level
analysis to enable users to explore the relations between features and
model outputs. For example, the INFUSE system [28] supports the
interactive ranking of features based on feature selection algorithms and
cross-validation performances. Later work by Krause et al. [27] also
proposed a performance diagnosis workflow where the instance-level
diagnosis leverages measures of “local feature relevance” to guide the
visual inspection of root causes that trigger misclassification.

As such, the visual analytics community has focused on explain-
ability with respect to model input-outputs, hidden layers, underlying
“black-box” mechanisms, and performance metrics; however, there is
still a need to explain model vulnerabilities. To this end, Liu et al. [33]
present AEVis, a visual analytics tool for deep learning models, which
visualizes data-paths along the hidden layers in order to interpret the
prediction process of adversarial examples. However, the approach is
tightly coupled with generating adversarial examples for deep neural
networks, which is not extensible to other attack forms and model
types. Our work builds upon previous visual analytics explainability
work, adopting coordinated multiple views that support various types
of models and attack strategies. What is unique in our work is the
integration of attack strategies into the visual analytics pipeline, which
allows us to highlight model vulnerabilities.

2.2 Adversarial Machine Learning
Since our goal is to support the exploration of model vulnerabilities, it
is critical to identify common attack strategies and model weaknesses.
The four main features of an adversary (or attacker) [10, 62] are the
adversary’s Goal, Knowledge, Capability, and Strategy, Figure 2 (Left).
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Fig. 2. Key features of an adversary. (Left) The general components
an adversary must consider when planning an attack. (Right) Specific
considerations in a data poisoning attack.

Goal: In adversarial machine learning, an attacker’s goal can be
separated into two major categories: targeted attacks and reliability
attacks. In a targeted attack, the attacker seeks to insert specific
malicious instances or regions in the input feature space and prevent
these insertions from being detected [37, 51]. In a reliability attack, the
goal of the attacker is to maximize the overall prediction error of the
model and make the model unusable for making predictions [53].
Knowledge: The information that can be accessed by an attacker
plays a significant role in how an attacker will design and deploy attack
operations. The more knowledge an attacker has about a model (victim),
the more precise an attack can be. In a black-box model, the attacker
will have imprecise (or even no) knowledge about the machine learning
model, while in a white-box setting, the attacker will have most (if
not all) of the information about the model, including the model type,
hyper-parameters, input features, and training dataset [10].
Capability: The capability of the attacker refers to when and what
the attacker can do to influence the training and testing process to
achieve the attack’s goal. Where the attack takes place (i.e., the stage
of the modeling process - training, testing) limits the capability of
the attacker. For example, poisoning attacks [9, 66] take place during
the training-stage, and the attacker attempts to manipulate the training
dataset. Typical operations in data poisoning attacks include adding
noise instances and flipping labels of existing instances. An evasion
attack [6, 16, 21] takes place during the testing stage. Such an attack is
intended to manipulate unlabeled data in order to avoid detection in the
testing stage without touching the training process. In all of these cases,
the attacker is constrained by how much they can manipulate either the
training or test data without being detected or whether the training and
test data are even vulnerable to such attacks.
Strategy: Given the attacker’s goal, knowledge, and capabilities, all
that remains is for the attacker to design an attack strategy. An optimal
attack strategy can be described as maximizing the attack effectiveness
while minimizing the cost of data manipulation or other constraints [43].

Currently, numerous adversarial machine learning attacks are being
developed, with evasion and poisoning strategies receiving the most
attention [60]. In evasion attacks, a common strategy is to add noise
to test data instances. Goodfellow et al. [21] proposed a method to
add “imperceptible” noise to an image, which can drastically confuse
a trained deep neural network resulting in unwanted predictions. For
poisoning attacks, the strategies are usually formalized as bi-level
optimization problems, such as gradient ascending [9] and machine
teaching [43]. Common among these attacks is the goal of manipulating
the trained model, and it is critical for users to understand where and

how their models may be vulnerable.

3 DESIGN OVERVIEW

Given the key features of an adversary, we have designed a visual
analytics framework that uses existing adversarial attack algorithms as
mechanisms for exploring and explaining model vulnerabilities. Our
framework is designed to be robust to general adversarial machine
learning attacks. However, in order to demonstrate our proposed
visual analytics framework, we focus our discussion on targeted data
poisoning attacks [10]. Data poisoning is an adversarial attack that
tries to manipulate the training dataset in order to control the prediction
behavior of a trained model such that the model will label malicious
examples into a desired classes (e.g., labeling spam e-mails as safe).
Figure 2 (Right) maps the specific goal, knowledge, capabilities, and
strategies of a poisoning attack to the generalized adversarial attack.

For the purposes of demonstrating our framework, we assume that
the attack takes place in a white-box setting, i.e., the attacker has
full knowledge of the training process. Although the scenario seems
partial to attackers, it is not unusual for attackers to gain perfect- or
near-perfect-knowledge of a model by adopting multi-channel attacks
through reverse engineering or intrusion attacks on the model training
servers [7]. Furthermore, in the paradigm of proactive defense, it is
meaningful to use the worst case attack to explore the upper bounds
of model vulnerability [10]. In terms of poisoning operations on the
training dataset, we focus on causative attacks [4], where attackers are
only allowed to insert specially-crafted data instances. This kind of
insertion widely exists in real-world systems, which need to periodically
collect new training data, examples include recommender systems and
email spam filters [53]. In such attacks, there is a limit to the number
of poisoned instances that can be inserted in each attack iteration, i.e.,
a budget for an attack. An optimal attack attempts to reach its goal by
using the smallest number of insertions within the given budget.

3.1 Analytical Tasks
After reviewing various literature on poisoning attacks [9, 10, 23, 46, 51,
53,57,60,62], we extracted common high-level tasks for analyzing poi-
soning attack strategies. These tasks were refined through discussions
with our co-author, a domain-expert in adversarial machine learning.

T1 Summarize the attack space. A prerequisite for many of the
algorithms is to set target instances to be attacked in the training dataset.
In our framework, analysts need to be able to identify attack vectors and
vulnerabilities of the victim model in order to specify target instances.

T2 Summarize the attack results. By following the well-known
visual information seeking mantra [52], the system should provide
a summary of the attack results after an attack is executed. In data
poisoning, typical questions that the attackers might ask include:

• T2.1 How many poisoning data instances are inserted? What is
their distribution? Has the attack goal been achieved yet?

• T2.2 What is the performance of the model before and after the
attack and is there a significant difference? How many instances
in the training dataset are misclassified by the poisoned model?

T3 Diagnose the impact of data poisoning. In this phase, the user
explores the prediction results and analyzes the details of the poisoned
model. Inspired by the recent work in interpretable machine learning [1,
27, 50, 69], we explore the influence of insertion focusing on: attribute
changes for individual instances; and drifts of data distributions on
features due to poisoning. We consider both instance-level and feature-
level diagnoses when investigating the impact of poisoning data. The
following questions are explored in this phase:

• T3.1 At the instance-level, is the original prediction different from
the victim model prediction? How close is the data instance to
the decision boundary? How do the neighboring instances affect
the class label? Is there any poisoned data in the data-instance’s
top-k nearest neighbors?



• T3.2 At the feature-level, what is the impact of data poisoning on
the feature distributions?

3.2 Design Requirements
From the task requirements, we iteratively refined a set of framework
design requirements to identify how visual analytics can be used to best
to support attack analysis and explanation. We have mapped different
analytic tasks to each design requirement.

Visualizing the Attack Space - D1. The framework should allow
users to upload their victim model and explore vulnerabilities. By
examining statistical measures of attack costs and potential impact, the
users should be able to find weak points in the victim model depending
on the application scenario, and finally identify desired target instances
for in-depth analysis in the next step (T1).

Visualizing Attack Results - D2. To analyze the results of an attack,
the framework should support overview and details-on-demand:

• Model Overview - D2.1, summarize prediction performance for
the victim model as well as the poisoned model (T2.2);

• Data Instances - D2.2, present the labels of the original and
poisoned data instances (T2.1, T3.1);

• Data Features - D2.3, visualize the statistical distributions of data
along each feature (T3.2);

• Local Impacts - D2.4, depict the relationships between target data
instances and their nearest neighbors (T3.1).

4 VISUAL ANALYTICS FRAMEWORK

Based on the user tasks and design requirements, we have developed
a visual analytics framework (Figure 3) for identifying vulnerabilities
to adversarial machine learning. The framework supports three main
activities: vulnerability analysis, analyzing the attack space, and analyz-
ing attack results. Each activity is supported by a unique set of multiple
coordinated views, and the user can freely switch between interfaces
and views. All views share the same color mapping in order to establish
a consistent visual design. Negative and positive classes are represented
by red and blue, respectively, and the dark red and blue colors are used
for indicating the labels of poisoning data instances. All actions in our
framework are predicated on the user loading their training data and
model. While our framework is designed to be modular to an array of
attack algorithms, different performance and vulnerability measures
are unique to specific attack algorithms. Thus, for discussion and
demonstration, we instantiate our framework on data poisoning attacks.

4.1 Data-Poisoning Attack Algorithms
We focus on the binary classification task described in Figure 4 (a)
where the training data instances are denoted as x ∈ X ,X ⊆ Rn×d

with class labels of y ∈ {−1,+1} (we refer to the−1 labels as negative
and the +1 labels as positive). A classification model θ is trained on
the victim training dataset, which creates a victim model. For a target
data instance xt and the corresponding predicted label yt = θ(xt), the
attacker’s goal is to flip the prediction yt into the desired class −yt
by inserting m poisoning instances P = {pi|pi ∈ Rd, i ∈ [1,m]}.
We use B to represent the budget, which limits the upper bound of m,
i.e., an attacker is only allowed to insert at most B poisoned instances.
To maximize the impact of data poisoning on the classifier, the attack
algorithms craft poisoned instances in the desired class, ypi = −yt.

4.1.1 Attack Strategies
Various attack algorithms have been developed to create an optimal set
of P with |P| ≤ B. To demonstrate how attacks can be explored in
our proposed framework, we implement two different attack algorithms
(Binary-Search and StingRay) described in Figure 4 (b).

Binary-Search Attack1. The Binary-Search Attack [12] assumes that
the target instance xt can be considered as an outlier with respect to the

1For simplicity, we refer to the Burkard and Lagesse algorithm [12] as
“Binary-Search Attack” even though it is not named by the original authors.
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Fig. 3. A visual analytics framework for explaining model vulnerabilities
to adversarial machine learning attacks. The framework consists of:
vulnerability analysis, attack space analysis, and attack result analysis.

training data in the opposite class {xi|yi = −yt}. The classification
model acts as an outlier detector and separates this target from the
opposite class−yt. For crafting poisoning instances in a Binary-Search
attack, the goal is to establish connections between the target and
the desired class −yt that mitigate the outlyingness of the target. As
illustrated in Figure 4, for each iteration, the Binary-Search Attack
utilizes the midpoint xmid between xt and its nearest neighbor xnn in
the opposite class, −yt, as a poisoning candidate. If this midpoint is in
the desired class, it is considered to be a valid poisoning instance. This
instance is appended to the original training dataset, and the model is
re-trained (θ1 in Step 3 - Figure 4). In this way, the poisoned instances
are iteratively generated, and the classification boundary is gradually
pushed towards the target until the target label is flipped. Sometimes the
midpoint may be outside of the desired class. Under this circumstance,
a reset of the procedure is required by using the midpoint between
xmid and xnn as the new candidate.

StingRay Attack. The StingRay attack [57] inserts new copies of
existing data instances by perturbing less-informative features. The
StingRay attack shares the same assumptions and pipeline as the Binary-
Search attack. The main difference between the attacks is how poi-
soning instances are generated (Step 2, Figure 4). In StingRay, a base
instance, xnn, near the target, xt, in the desired class is selected, and a
copy of the base instance is created as a poisoned candidate. By using
some feature importance measures, a subset of features are selected
for value perturbation on the poisoned candidate. After randomly
perturbing the feature values, the poisoned instance closest to the target
is inserted into the training data.

4.1.2 Attack Results
Both attacks insert poisoned data instances into the victim training
dataset resulting in the poisoned training dataset. The model trained
on this poisoned dataset is called the poisoned model, and we can
explore a variety of performance metrics to help explain the results
of an attack (e.g., prediction accuracy, recall). For data instance level
analysis (D2.2), we derive two metrics that can characterize the impact
of data poisoning on the model predictions.

Decision Boundary Distance (DBD) [22]: In a classifier, the decision
boundary distance is defined as the shortest distance from a data in-
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stance to the decision boundary. Under the assumption of outlyingness
in the Binary-Search or StingRay attack, DBD is an indication of the
difficulty of building connections between a target instance and its
opposite class. However, it is difficult (and sometimes infeasible)
to derive exact values of DBD from the corresponding classifiers,
especially in non-linear models. We employ a sample-based, model-
independent method to estimate the DBDs for the training data as
illustrated in Figure 5. First, with a unit ball centered at the data
instance, we uniformly sample a set of unit direction vectors from the
ball. For each vector, we perturb the original instance along the vector
iteratively with a fixed step length, predict the class label with the
classifier, and stop if the prediction is flipped. We use the number of
perturbation steps as the distance to the decision boundary. We use the
product of step length and the minimum steps among all the directions
as an estimation of the DBD for each data instance.

Minimum Cost for a Successful Attack (MCSA): To help users
understand the cost of an attack with respect to the budget, we calculate
the minimum number of insertions needed to attack a data instance.
For each data instance, the MCSA is the number of poisoning instances
that must be inserted for a successful attack under an unlimited budget.
The MCSA value is dependent on the attack algorithm.

4.2 Visualizing the Attack Space
The data table view (Figure 1 (B)) acts as an entry point to the attack
process. After loading a model, all the training data instances are listed
in the table to provide an initial static check of vulnerabilities (T1, D1).
Each row represents a data instance in the training dataset, and columns
describe attributes and vulnerability measures which includes the DBD
and MCSA for both the Binary-Search and StingRay attack algorithms,
as well as the original and the predicted labels. Inspired by Jagielski
et al. [23] and Steinhardt et al. [53], we use colored bars for MCSA
to highlight different vulnerability levels based on the poisoning rates,
which is defined as the percentage of poison instances in the entire
training dataset. Poisoning rates of lower than 5% are considered to be

high risk, since only a small amount of poisoned instances can cause
label flipping in these data instances, and poisoning rates of 20% are
likely infeasible (high risk of being caught). We define three levels for
the poisoning rates: 1) high risk (red) - lower than 5%; 2) intermediate
risk (yellow) - 5% to 20%, and; 3) low risk (green) - more than 20% .

The rows in the table can be sorted by assigning a column as the
sorting key. The user can click on one of the checkboxes to browse
details on the data ID, class label, and feature values, Figure 1 (B). In
addition, the clicking operation will trigger a dialog to choose between
the two attack algorithms, and the interface for the corresponding attack
result will be opened in a new tab page below.

4.3 Visualizing the Attack Results
After selecting a target instance and an attack algorithm, the user can
perform an in-depth analysis of the corresponding attack results. To
visualize the results of the attack, we use four views: model overview,
instance view, feature view, and kNN graph view.

Model Overview: The model overview provides a summary of the
poisoned model as well as a comparison between the original (victim)
and poisoned model (T2, D2.1). The model overview (Figure 1 (C))
provides a brief summary of the names of the victim and the poisoned
models, the ID of the target data instance, and the class of the poisoned
instances. A radar chart is used to describe the performance of the two
models. The four elements commonly used in confusion matrices (true
negative (TN), false negative (FN), true positive (TP), and false positive
(FP)) are mapped to the four axes on the left side of the radar chart, and
accuracy, recall, F1 and ROC-AUC scores are mapped to the right side.
When hovering on the lines, the tooltip shows the detailed values on
the axes. The two lines in the radar chart can be disabled or enabled by
clicking on the legends.

Instance View: The instance view illustrates changes in the training
datasets and supports the comparative analysis of predictions made
by the victim and poisoned models from the perspective of individual
data instances (T3.1, D2.2). The instance view is comprised of two
sub-views, a projection view and an instance attribute view, which
visualize data instances under the “overview + detail” scheme.
Projection View: The projection view (Figure 1 (D)) provides a global
picture of the data distribution, clusters, and relationships between
the original and poisoned instances. We apply the t-SNE projection
method [40] to the poisoned training dataset. The projection coordinates
are then visualized in a scatterplot. We share the colors used in the
Model Overview, where red is for label predictions in the negative
class and blue for the positive class. To support comparisons between
the victim and poisoned model, we apply the corresponding poisoning
color to the border of poisoned instances and stripe patterns to the data
instances whose class prediction changed after the attack.
Instance Attribute View: The instance attribute view (Figure 1 (E))
uses a table-based layout where each row represents the attributes of
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an individual data instance including classification probabilities and
DBDs from the victim and poisoned model. To conduct a comparison
between the attributes of the victim and poisoned models, we embed an
illustration of attribute changes into the rows using a virtual decision
boundary, Figure 6. Here, the vertical central line acts as a virtual
decision boundary and separates the region into two half panes indicat-
ing the negative and positive class regions. Two glyphs, representing
the predictions of the victim and the poisoned models, are placed
in the corresponding half panes based on the predicted class labels.
The horizontal distances from the center dots to the central line are
proportional to their DBDs. To show the direction of change, we link
an arrow from the victim circle to the poisoned circle. Additionally, the
classification probabilities are mapped to the length of the lines in the
glyph. A set of options are provided in the top right corner of the view
for filtering out irrelevant instances based on their types.

Feature View: The feature view is designed to reflect the relationship
between class features and prediction outputs to help users understand
the effects of data poisoning (T3.2, D2.3). In Figure 1 (F), each row in
the list represents an individual feature. The feature value distribution is
visualized as grouped colored bars that correspond to positive, negative,
and poisoning data. To facilitate searching for informative features, the
rows can be ranked by a feature importance measure on both the victim
and the poisoned models. In our framework, we utilize the feature
weights exported from classifiers as the measure, e.g., weight vectors
for linear classifiers and Gini importance for tree-based models. In the
list, the importance values and their rankings from the two models, as
well as the difference, are shown in the last three columns.

Local Impact View: In order to understand model vulnerabilities,
users need to audit the relationship between poisoned instances and
targets to gain insights into the impact of an attack (T3.1, D2.4). We
have designed a local impact view, Figure 1 (G), to assist users in
investigating the neighborhood structures of the critical data instances.

For characterizing the neighborhood structures of data instances,
we utilize the k-nearest-neighbor graph (kNN graph), Figure 7 (a), to
represent the closeness of neighborhoods, which can reveal the potential
impact on the nearby decision boundary. A poisoned instance that is
closer to a target may have more impact on the predicted class of the
target. Such a representation naturally corresponds to the underlying
logic of the attack algorithms, which try to influence the neighborhood
structures of target instances. Our view is designed to help the user
focus on the most influential instances in an attack. To reduce the
analytical burden, we condense the scale of the kNN graph to contain
only three types of instances as well as their k-nearest neighbors:

1. The target instance, which is the instance being attacked;
2. The poisoning instances, and;
3. The “innocent” instances, whose labels are flipped after an attack,

which is a side-effect of poisoning.
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Fig. 7. Visual design of the local impact view. (a) The process of building
kNN graph structures. (b) The visual encodings for nodes and edges.

For the target and innocent instances, we extract their kNNs before
the attack, i.e., the top-k nearest non-poisoned neighbors. This allows
the user to compare the two sets of kNNs to reveal changes in the local
structures after inserting poisoned instances.

The design of the local impact view is based on a node-link diagram
of the extracted kNN graph where the data instances are represented
as nodes. The coordinates of the nodes are computed with the force-
directed layout method on the corresponding graph structure. We use
three different node glyphs to encode the data instances depending on
the instance type (target, poisoned, innocent), Figure 7 (b).

For the target and innocent instances, we utilize a nested design
consisting of three layers: a circle, an inner ring, and an outer ring. The
circle is filled with a blue or red color representing the predicted label.
A striped texture is applied to the filled color if the label predicted
by the poisoned model is different from the victim one, indicating
that label flipping has occurred for this data instance. Additionally,
the classification probability from the poisoned model is mapped to
the radius of the circle. The inner ring uses two colored segments to
show the distribution of the two classes in the k-nearest non-poisoning
neighbors. The outer ring is divided into three segments that correspond
to the negative and positive classes and poisoning instances in the kNN.

For poisoned instances, we use circles that are filled with the
corresponding poisoning color. To depict the total impact on its
neighborhoods, we map the sum of the impact values due to poisoned
instances to the lightness of the filled color. As in the encoding of the
target instances, the radius of the poisoned instance circles represent
the classification probability. All other data instances are drawn as
small dots colored by their corresponding prediction labels.

The edges in the local impact view correspond to measures of relative
impacts, which are represented by directed curved edges. Inspired by
the classic leave-one-out cross validation method, the relative impact is
a quantitative measure of how the existence of a data instance (poisoned
or not) influences the prediction result of another instance with respect
to the classification probability. Algorithm 1 is used to calculate the
impact of a neighbor xnn on a data instance x. First, we train a new
model with the same parameter settings as the poisoned model; however,
xnn is excluded. Then, we compute the classification probability of x
with this new model. Finally, the relative impact value is calculated as
the absolute difference between the new probability and the previous
one. To indicate the source of the impact, we color an edge using the
same color as the impacting data instance. The color gradient maps to
the direction of impact and curve thickness maps to the impact value.
Additionally, since the kNN graph may not be a fully-connected graph,
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Fig. 8. A targeted attack on hand-written digits. (1) In the data table view, we identify the target instance #152 (2) as a potential vulnerability. (3) In
the model overview, we observe no significant change of the prediction performance after an attack on #152 occurs. (4) In the projection view, the
two classes of instances are clearly separated into two clusters. The poisoning instances (dark blue circles) penetrate class Number 8 and reach the
neighboring region of instance #152. (5) The attack can also be explored in the local impact view where poisoning nodes and the target show strong
neighboring connections. (6) The detailed prediction results for instance #152 are further inspected in the instance attribute view.

we employ dashed curves to link the nodes with the minimum distances
between two connected components in the kNN graph.

Algorithm 1: Computing the impact of xnn on x

Data: training dataset X ; two instances x ∈ X , xnn ∈ X ;
previous classification probability of x, px

Result: The impact value of xnn on x, I(xnn,x)
1 θ ← Classifier(X \ {xnn})
2 p′x ← Probability of θ(x)
3 I(xnn,x)← |p′x − px|

The local impact view supports various interactions on the kNN
graph. Clicking on a node glyph in the local impact view will highlight
the connected edges and nodes and fade out other irrelevant elements.
A tooltip will be displayed as well to show the change of neighboring
instances before and after the attack. The highlighting effects of data
instances are also linked between the projection view and the local
impact view. Triggering a highlighting effect in one view will be
synchronized in the other one.

One limitation in the proposed design is the potential for visual
clutter once the size of the graph becomes considerably large. In order
to provide a clear entry point and support detail-on-demand analysis,
we support various filters and alternative representations to the visual
elements. By default, the edges are replaced by gray lines, which only
indicates the linking relationships between nodes. Users can enable
the colored curves mentioned above to examine the impacts with a list
of switches, Figure 1 (G.1). Unnecessary types of nodes can also be
disabled with the filtering options, Figure 1 (G.2).

5 CASE STUDY AND EXPERT INTERVIEW

In this section, we present two case studies to demonstrate how our
framework can support the analysis of data poisoning attacks from the
perspective of models, data instances, features, and local structures. We
also summarize feedback from four domain experts.

5.1 Targeted Attack on Hand-written Digits
Digit recognizers are widely-used in real applications including auto-
graders, automatic mail sorting, and bank deposits. In such a system,
an attacker may wish to introduce reliability issues that can result in
mis-delivered mail, or create targeted attacks that cause checks to be
mis-read during electronic deposit. For this case study, we employ a toy
example in which a model is used to classify hand-written digits. This
case study serves as a mechanism for demonstrating system features.

For this classifier, we utilize the MNIST dataset [31], which contains
60,000 images of ten hand-written digits at a 28×28 pixel resolution
(784 dimensions in total). We trained a Logistic Regression classifier,

implemented in Python Scikit-Learn library [48], using 200 randomly
sampled images from the numbers 6 and 8, respectively. The value of
k for extracting kNN graphs in the local impact view is set to 7.

Initial Vulnerability Check (T1): After the training dataset and model
are loaded into the system, vulnerability measures are automatically
calculated based on all possible attacks from the Binary-Search and
StingRay Attack, and results are displayed in the data table view
(Figure 8 (1)). By ranking the two columns of MCSAs for each attack
algorithm, the user finds that the red bar colors indicate that many of
the data instances are at high risk of a low cost poisoning attack. From
the table, the user can also observe that the accuracy and recall values
are not highly influenced by an attack, suggesting that a targeted attack
on a single instance will not influence prediction performances. To
some extent, this may disguise the behavior of a targeted attack by not
alerting the model owners with a significant performance reduction.

Visual Analysis of Attack Results (T2, T3): Next, the user wants to
explore a potential worst case attack scenario. Here, they select the
instance with the largest MCSA among all the data instances (instance
#152, 3.5% in poisoning rate) (Figure 8 (2)) under the StingRay attack.
As illustrated in Figure 8 (3), first the user performs a general check of
the model performance (T2.2). In the model overview, the two lines
on four performance metrics in the radar chart overlap, indicating little
to no model performance impact after a poisoning attack. Next, the
user explores the distribution of the poisoning instances (T2.1, T3.1).
In the projection results, Figure 8 (4), the poisoning instances span
the border region of two clusters and flip the prediction of the target
instance. However, there are no other innocent instances influenced
by the poison insertions. The user can further inspect the impact of at
attack on instance #152 by examining the local impact view, Figure 8
(5). Here, the user can observe that in a poisoning attack on instance
#152, the neighborhood of #152 must be heavily poisoned, and these
poison insertions establish a connection between the target instance
#152 and two other blue instances, leading to label flipping. In this
case, the user can identify that the sparsity of the data distribution in the
feature space may be contributing to the vulnerability of instance #152.
Finally, the user explores the detailed prediction result of instance #152
by navigating to the instance attribute view (Figure 8 (6)). Here, the
user observes that the label has flipped from Number 8 (red) to Number
6 (blue); however, the poisoning results in a very short DBD and a low
classification probability for instance #152.

Lessons Learned and Possible Defense: From the analysis, our do-
main expert identified several issues in the victim model and dataset.
First, even if instance #152 is successfully poisoned, the instance is
fairly near the decision boundary of the poisoned model, which can be



identified by the low value of DBD and the low classification probability.
If any further data manipulations occur in the poisoned dataset, the
prediction of the target instance may flip back, i.e., #152 is sensitive
to future manipulations and the poisoning may be unstable. For the
attackers, additional protection methods that mitigate the sensitivity
of previous target instances can be adopted by continuously attacking
neighboring instances, further pushing the decision boundary away
from the target, or improving attacking algorithms to insert duplicated
poisons near the target. Our domain expert was also interested in the
pattern of a clear connection from the two blue instances to instance
#152 in the local impact view. He noted that it may be due to data spar-
sity, where no other instances are along the connection path established
by the poisoning instances, resulting in #152 having a high vulnerability
to poisoning insertions. For defenders who want to alleviate the sparsity
issue and improve the security of the victim model, possible solutions
could be to add more validated labeled samples into the original training
dataset and adopt feature extraction or dimension reduction methods to
reduce the number of the original features.

5.2 Reliability Attack on Spam Filters
For spammers, one of their main goals is to maximize the number of
spam emails that reach the customers’ inbox. Some models, such as
the Naive Bayes spam filter, are extremely vulnerable to data poisoning
attacks, as known spammers can exploit the fact that the e-mails they
send will be treated as ground truth and used as part of classifier training.
Since known spammers will have their mail integrated into the modeling
process, they can craft poisoned data instances and try to corrupt the
reliability of the filter. These specially-crafted emails can mislead the
behavior of the updated spam filter once they are selected in the set of
new samples. In this case study, we demonstrate how our framework
could be used to explore the vulnerabilities of a spam filter.

We utilize the Spambase dataset [17] that contains emails tagged
as non-spam and spam collected from daily business and personal
communications. All emails are tokenized and transformed into 57-
dimensional vectors containing statistical measures of word frequencies
and lengths of sentences. For demonstration purposes, we sub-sampled
the dataset into 400 emails, keeping the proportion of non-spam and
spam emails (non-spam:spam = 1.538:1) in the original dataset, re-
sulting in 243 non-spam instances and 157 spam ones. A Logistic
Regression classifier is trained on the sub-sampled dataset. The value
of k for the kNN graphs is again set to 7.

Initial Vulnerability Check (T1): Using the Logistic Regression
Classifier as our spam-filter model, we can explore vulnerabilities in the
training data. For spam filters, the recall score (True-Positives / True-
Positives + False-Negatives) is critical as it represents the proportion
of detected spam emails in all the “true” spams. For a spam filter, a
lower recall score indicates that fewer true spam emails are detected
by the classifier. We want to understand what instances in our training
dataset may be the most exploitable. Here, the user can sort the training
data instances by the change in recall score after an attack (Figure 1
(1)). After ranking the two columns of recall in ascending order for
each attack algorithm, we found that the Binary-Search attack, when
performed on instance #40, could result in a 0.09 reduction in the recall
score at the cost of inserting 51 poisoned instances.

Visual Analysis of Attack Results (T2, T3): To further understand
what an attack on instance # 40 may look like, the user can click on the
row of instance #40 and choose “Binary-Search Attack” for a detailed
attack visualization. In the model overview, Figure 1 (2), we see that
the false negative value representing the undetected spams increased
from 16 to 30 (nearly doubling the amount of spam e-mails that would
have gotten through the filter), while the number of detected spams
decreased from 141 to 127. This result indicates that the performance
of correctly labeling spam emails in the poisoned model is worse than
the victim model (T2.2).

We can further examine the effects of this attack by doing an instance-
level inspection using the projection view (T3.1). As depicted in
Figure 1 (3), the two classes of points, as well as the poisoned in-
stances, show a heavy overlap. This indicates that there is an increased

possibility of flipping innocent instances coupled with a decrease in
prediction performance. In the local impact view (Figure 1 (4)), it can
be observed that the poisoning instances are also strongly connected to
each other in their nearest neighbor graph (T2.1). Additionally, there
are five poisoning instances with a darker color than the others. As
the lightness of poisoning nodes reflects their output relative impact,
these five neighbors of the target instance contributes more to the
prediction results than other poisons. For target instance #40, the outer
ring consists only of the poisoning color, indicating that it must be
completely surrounded by poisoning instances in order for the attack
to be successful. Additionally, in a successful attack, there would be
more than 20 innocent instances whose label are flipped from spam to
non-spam, which is the main cause of the decreased recall value. After
examining the details of these instances in Figure 1 (5), we found that
most of their DBDs in the victim model are relatively small, i.e., they
are close to the previous decision boundary. As such, their prediction
can be influenced by even a small perturbation of the decision boundary.
Finally, we conducted a feature-level analysis by browsing the feature
view (T3.2, Figure 1 (6)). We find that for distributions of poisoning
instances along each feature, the variances are quite large on some
words including “will” and “email”. This suggests that there are large
gaps between the non-spam emails and instance #40 on these words in
terms of word frequencies, which could be exploited by attackers when
designing the contents of the poisoned emails.
Lessons Learned and Possible Defense: From our analysis, our
domain expert was able to identify several key issues. First, from
the distribution of impact values and classification probabilities among
the poisoning instances, an interesting finding was that the poisoning
instances close to the target are more uncertain (i.e., of low classification
probability values) and essential to flipping its label. Our domain expert
mentioned that further optimization may be performed by removing
poisoning instances far away from the target because their impact and
classification uncertainty could be too low to influence the model train-
ing. Second, even though an attack on instance #40 has the maximum
influence on the recall value, there is a large (but not unfathomable)
cost associated with inserting 51 poisoning instances (poisoning rate =
12.75%). Given the large attack cost, our domain expert was interested
in exploring alternative attacks with similar impacts and lower costs,
such as instance #80 (Figure 1 (7)). A poisoning attack on #80 can result
in a reduction of 0.07 on the recall at almost half the cost of #40 (29
insertions, poisoning rate = 7.25%). The key takeaway that our analyst
had was that there are multiple viable attack vectors that could greatly
impact the reliability of the spam filter. Given that there are several
critical vulnerable targets, the attackers could perform continuous low-
cost manipulations to reduce the reliability of the spam filter. This sort
of approach is typically referred to as a “boiling-frog attack [62]”. Here,
our domain expert noted that the training-sample selection process may
need to be monitored.

5.3 Expert Interview
To further assess our framework, we conducted a group interview with
our collaborator (E0) and three additional domain experts in adversarial
machine learning (denoted as E1, E2, and E3). For the interview,
we first introduced the background and goals of our visual analytics
framework, followed by an illustration of the functions supported by
each view. Then, we presented a tutorial of the analytical flow with the
two case studies described in Section 5.1 and 5.2. Finally, the experts
were allowed to freely explore the two datasets (MNIST and Spambase)
in our system. The interview lasted approximately 1.5 hours.

At the end of the interview session, we collected free-form responses
to the following questions:

1. Does the system fulfill the analytical tasks proposed in our work?

2. Does our analytical pipeline match your daily workflow?

3. What are the differences between our visual analytics system and
conventional machine learning workflows?

4. Is the core information well-represented in the views?



5. Are there any views that are confusing, or that you feel could
have a better design?

6. What results can you find with our system that would be difficult
to discover with non-visualization tools?

Framework: The overall workflow of our framework received positive
feedback with the experts noting that the system was practical and
understandable. E3 appreciated the two-stage (attack space analysis
and attack result analysis) design in the interface, and he conducted
a combination of “general checks + detailed analysis”. E2 noted that

“the stage of attack space analysis gives our domain users a clear sense
about the risk of individual samples, so we can start thinking about
further actions to make the original learning models more robust and
secure,”. E1 mentioned that the framework could be easily adapted
into their daily workflow and improve the efficiency of diagnosing new
poisoning attack algorithms. E1 also suggested that it will be more
flexible if we can support hot-swapping of attack algorithms to facilitate
the diagnosis process.

Visualization: All the experts agreed that the combination of different
visualization views can benefit multi-faceted analysis and provide many
aspects for scrutinizing the influence of poisoning attacks. E2 was
impressed by the instance attribute view and felt that the glyphs were
more intuitive than looking at data tables since the changes of distances
to the decision boundary can be directly perceived. E3 mentioned
that the local impact view provides essential information on how the
neighboring structures are being influenced. The two-ring design of
the target and innocent instances provides a clear comparison of two
groups of nearest neighbors before and after an attack. E3 further
added that the node-link diagram and the visual encoding of impacts
are effective for tracing the cause of label flipping and the valuable
poisoning instances. “With the depiction of impacts, maybe we could
find how to optimize our attack algorithms by further reducing the
number of insertions, since some of the low-impact poisoning instances
may be removed or aggregated.”

Limitations: One issue found by our collaborator, E0, was the training
time that was necessary for using our framework. E0 commented that
during the first hour of the interview, we were often required to repeat
the visual encoding and functions in the views. However, once the
domain experts became familiar with the system after free exploration
for some time, they found that the design is useful for gaining insights
from attacks. We acknowledge that there could be a long learning
curve for domain experts who are novice users in comprehensive visual
analytics systems.

6 DISCUSSION AND CONCLUSIONS

In this work, we propose a visual analytics framework for exploring
vulnerabilities and adversarial attacks to machine learning models. By
focusing on targeted data poisoning attacks, our framework enables
users to examine potential weak points in the training dataset and
explore the impacts of poisoning attacks on model performance. Task
and design requirements for supporting the analysis of adversarial
machine learning attacks were identified through collaboration with
domain experts. System usability was assessed by multiple domain
experts and case studies were developed by our collaborating domain
scientist. Target users of our framework are data scientists who utilize
machine learning models in mission-critical domains. In contrast to
traditional reactive defense strategies that respond when attacks are
detected, our framework serves as a mechanism for iterative proactive
defense. The users can simulate poisoning operations and explore
attack vectors that have never been seen in the historical records.
This can enable domain scientists to design more reliable machine
learning models and data processing pipelines. An implementation of
our framework is provided in Github2.

Target Users: The target users of our framework are data scientists
and security experts who wish to explore model vulnerabilities. Data

2https://github.com/VADERASU/visual-analytics-adversarial-attacks

scientists can use the proposed framework to perform extensive checks
on their model training processes in order to enrich the quality of
training datasets. Similarly, security experts can benefit from using our
framework by actively adopting new attack strategies for the purpose
of penetration testing following the paradigm of “security-by-design”
in proactive defense [10].

Limitations: One major concern in our design is scalability. We have
identified issues with both the attack algorithms and visual design.

Attack Algorithms: The computational efficiency of an attack algorithm
has a significant influence on the cost of pre-computing vulnerability
measures. In order to explore vulnerabilities in data poisoning, every
data instance must undergo an attack. In the two case studies, it takes
about 15 minutes to compute the MCSA values for the 400 training data
instances. In large-scale datasets, this may make the pre-computation
infeasible. Sampling methods could be used to reduce the analysis
space, and weighted sampling can be adopted to increase the number of
samples in the potentially vulnerable regions in the feature space. An
upper limit on attack costs could also be used so that a poisoning attack
would simply be marked as “failure” if the upper bound is reached.
Furthermore, progressive visual analysis [3,54] can be employed in the
sampling process, allowing users to conduct a coarse-grained analysis
of the samples and then increase sample rates on targeted regions.

Visual Design: In our visual design, circles may overlap when the
number of training data instances is over one thousand. To mitigate
visual clutter in the projection result, we have employed semantic
zooming in the projection view to support interactive exploration
in multiple levels. In the future, various abstraction techniques for
scatterplots such as Splatterplots [42], down-sampling [14], and glyph-
based summarization [32] can be integrated to reduce the number of
points displayed in the canvas. Interactive filtering can also be adopted
to remove the points in less important regions, e.g., far away from the
target instance. A similar issue also exists in the local impact view
where the current implementation supports up to 100 nodes shown as
graph structures. The readability of large graph visualizations is still an
open topic in the community. One way to scale our design would be to
build hierarchical aggregation structures on the nodes by clustering the
corresponding instances with specific criteria [20, 26, 67].

Future Work: In this work, we use the data poisoning attack as the
main scenario to guide the visual design and interactions in the visual
analytics framework. Based on the successful application in poisoning
attacks, we plan to adapt our framework for other typical adversarial
settings and attack strategies, such as label-flipping attacks [53] where
the labels of training data instances can be manipulated, and evasion
attacks [6, 16, 21] that focus on the testing stage. Another issue of our
work is that the framework currently does not support the integration
of known defense strategies. In practice, attack and defense strategies
often co-exist and must be simultaneously considered in assessing
vulnerabilities. Future iterations of this framework will incorporate
defense methods as a post-processing stage to evaluate the vulnerability
and effectiveness of attacks under countermeasures. In addition, since
currently our work only considers classification models for general-
purpose tasks, another extension would be to specialize our framework
to support domain-specific analyses, such as image recognition, biolog-
ical analysis, and network intrusion detection.
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